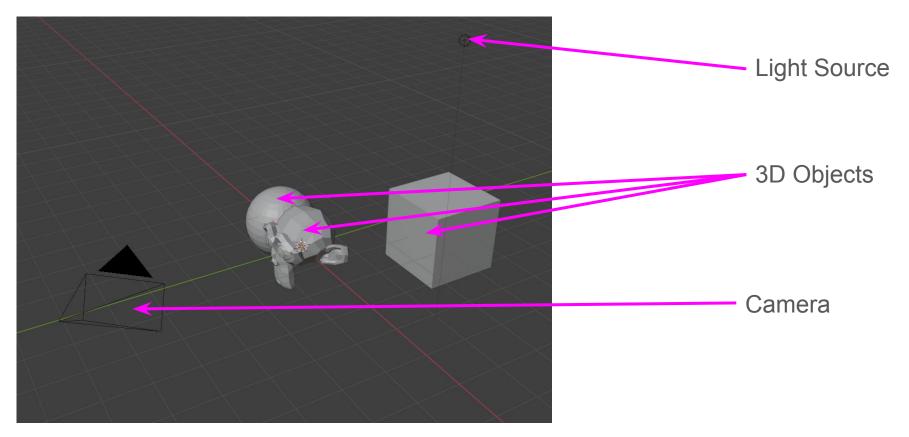
3D Graphics

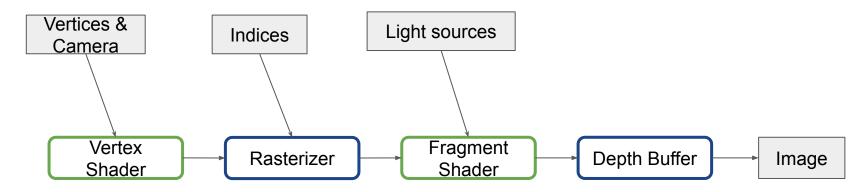
The rendering pipeline

Reminder : Scene

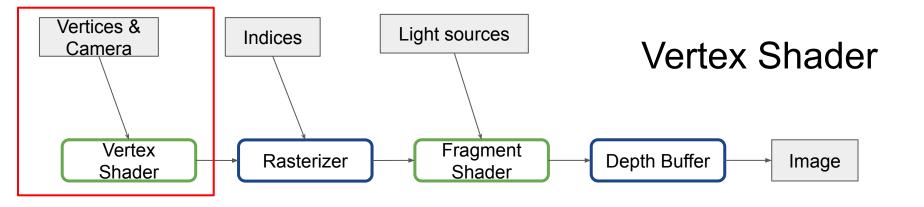


The rendering pipeline

Helps us go from a 3D scene to a 2D image

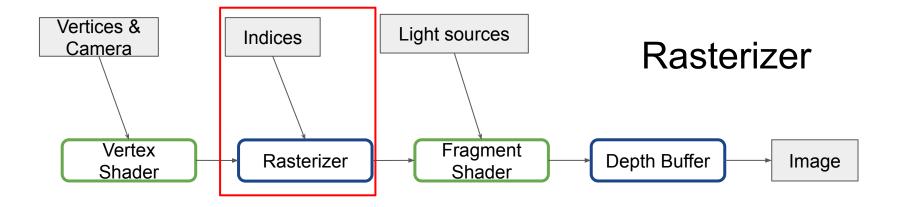


Minimal rendering pipeline



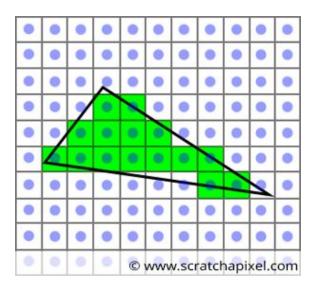
Re-express vertices in the camera coordinates system

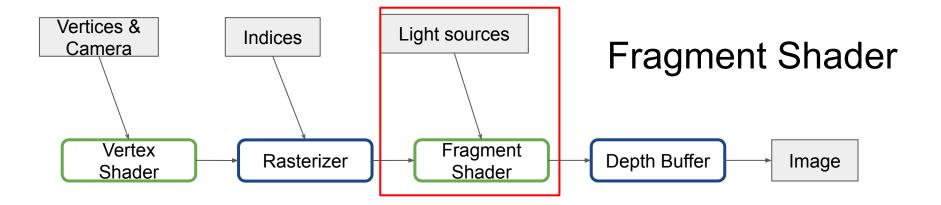
Project vertices in the frustum



Find which pixel is inside which triangle

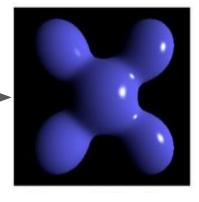
Emit fragments (candidates pixel)

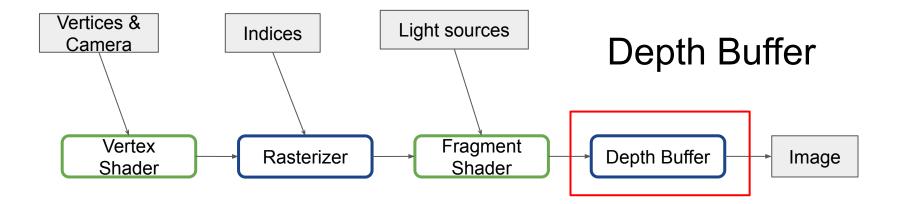




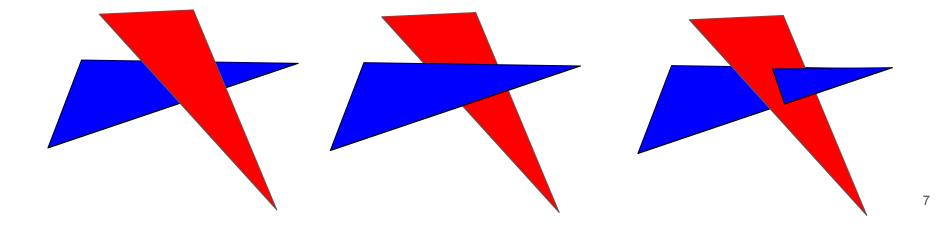
Active Storillen on

Compute the color to give each fragments

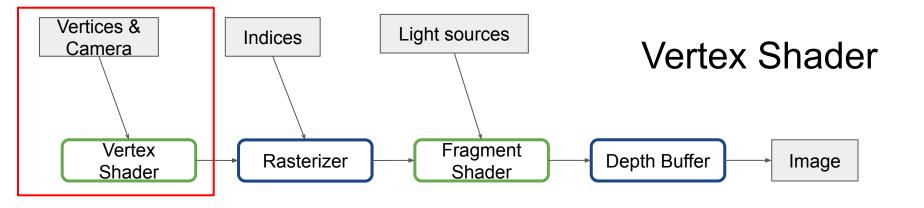




Choose which Fragment get to become a pixel using a Depth test

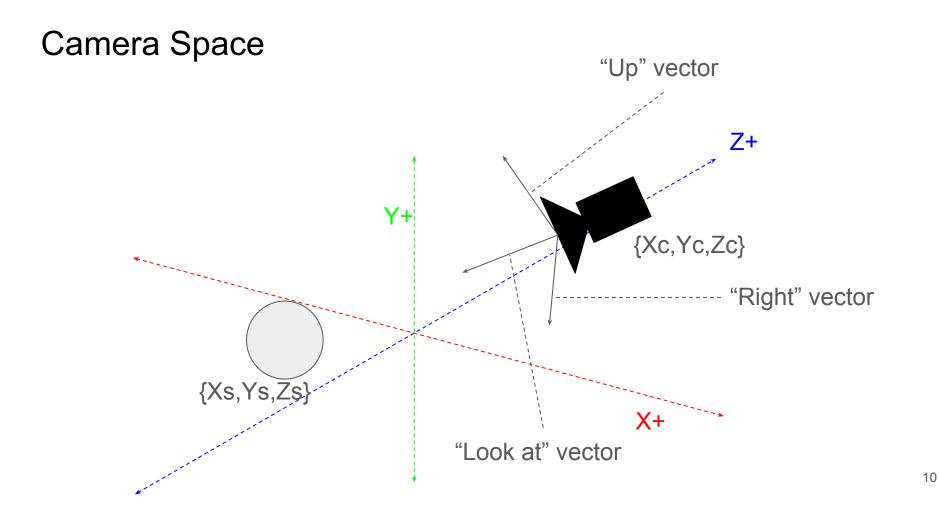


Vertex Shader

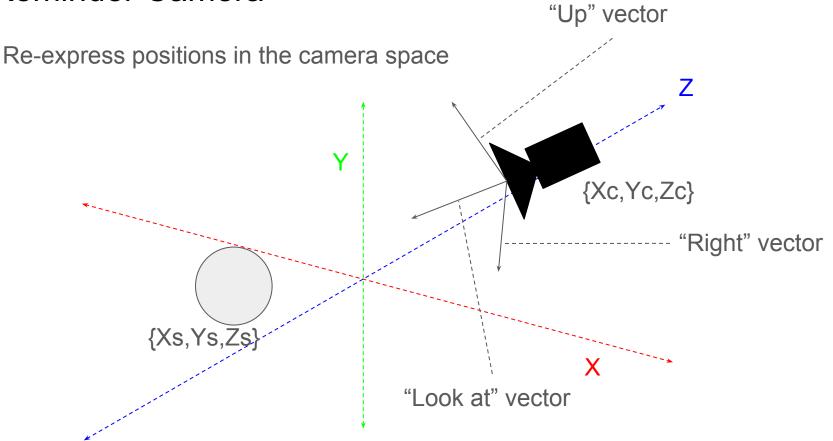


Re-express vertices in the camera coordinates system

Project vertices in the frustum

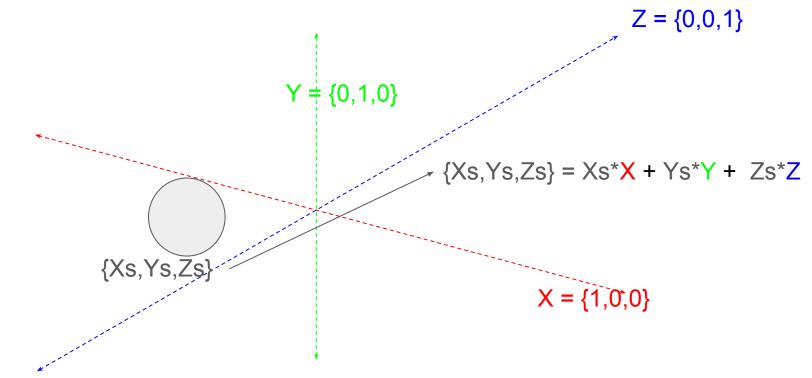


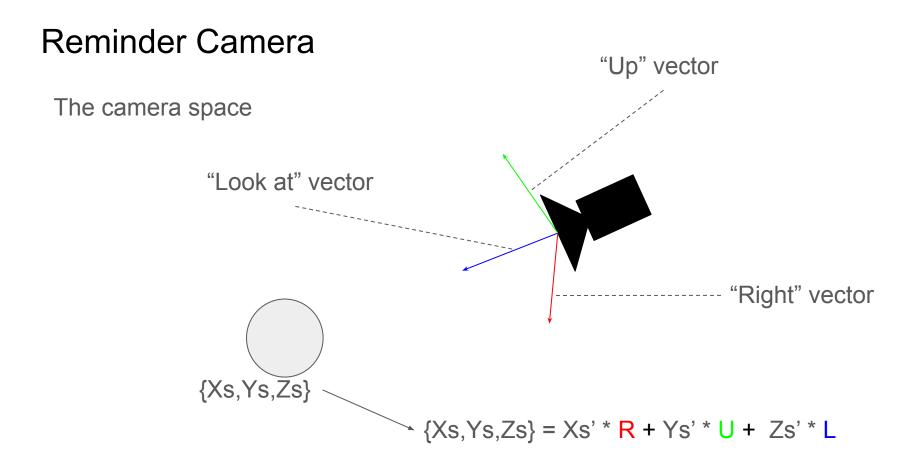
Reminder Camera



Reminder Camera

Our current coordinates :





Reminder Camera

The Mathematical problem

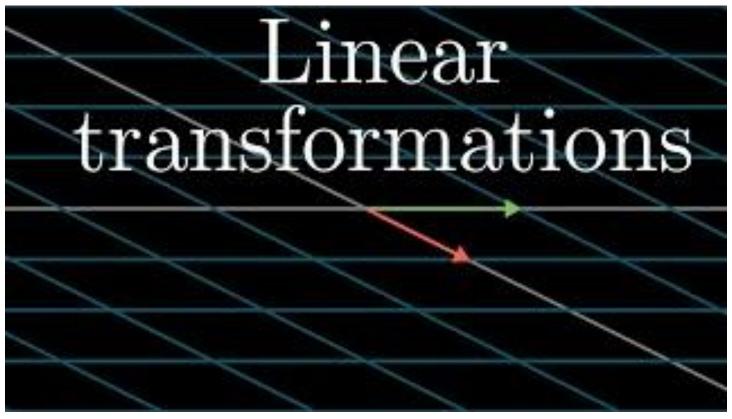
 ${Xs,Ys,Zs} = Xs' * R + Ys' * U + Zs' * L$

 $\{Xs,Ys,Zs\} = Xs * X + Ys * Y + Zs * Z$

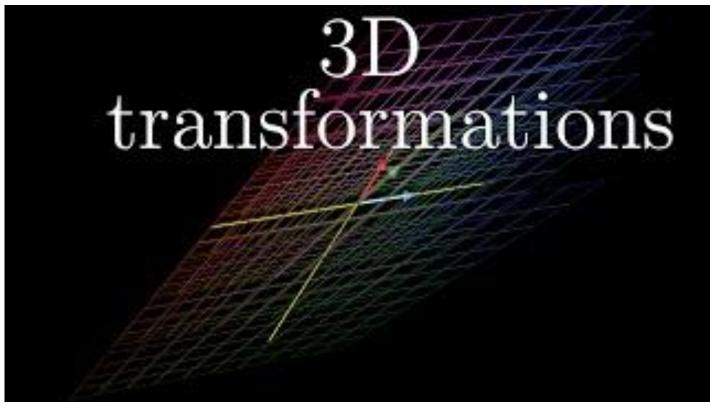
Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L

The problem Find Xs', Ys', and Zs'

Linear Transformations



Linear Transformations



https://youtu.be/rHLEWRxRGiM?si=aKhXMsqAqGqWmSQv

Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L

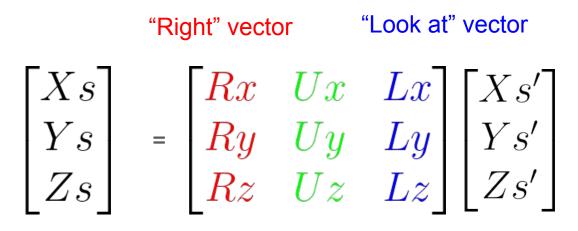
What is the matrix that solve this problem

(1 minute alone)

(2 minutes with your neighbors)

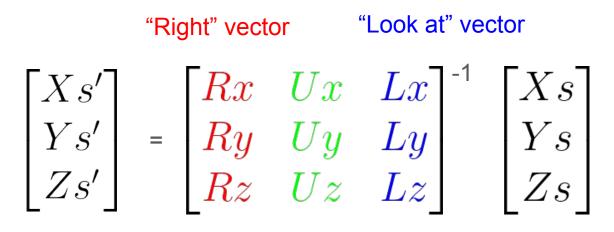
(5 minutes with the whole group)

$$Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L$$



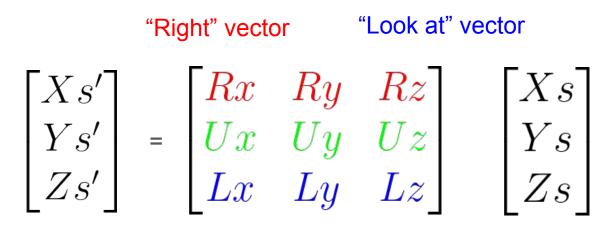
"Up" vector

$$Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L$$

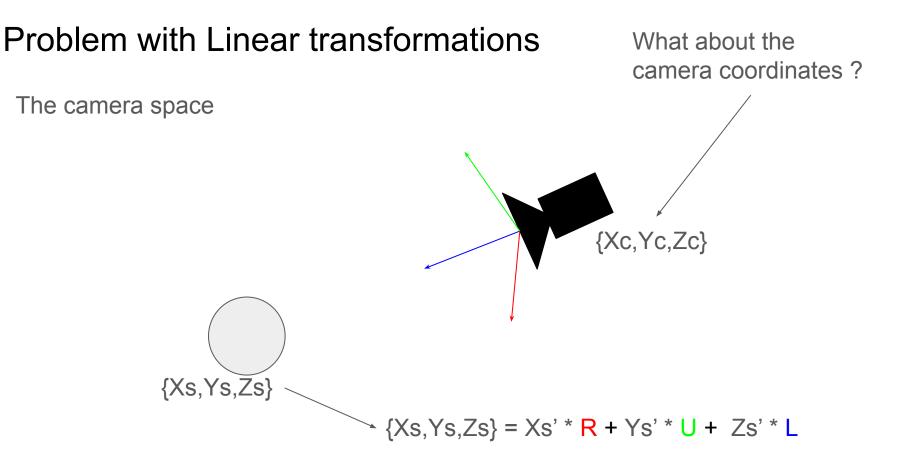


"Up" vector

$$Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L$$



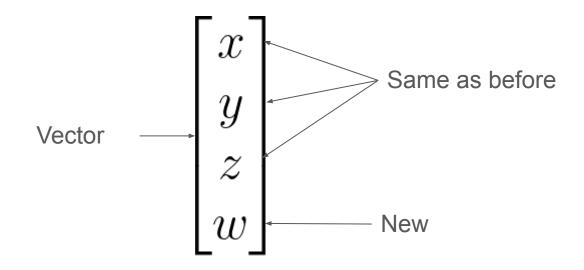
"Up" vector



Homogeneous Coordinates

Allow us to "move" the origin of the frame

Using 4 coordinates instead of 3 : Homogeneous coordinates



Linear Transformation

$$Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L$$

$$\begin{bmatrix} Xs' \\ Ys' \\ Zs' \\ Ws \end{bmatrix} = \begin{bmatrix} Rx & Ry & Rz & 0 \\ Ux & Uy & Uz & 0 \\ Lx & Ly & Lz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} Xs \\ Ys \\ Zs \\ Ws \end{bmatrix}$$

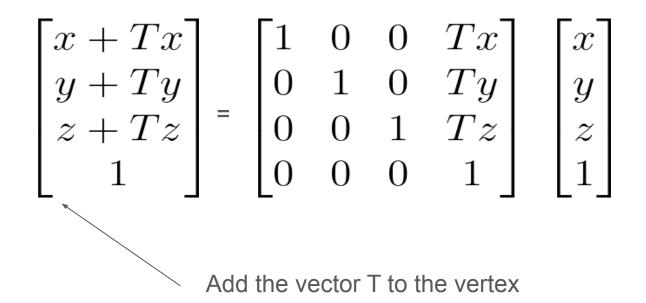
Affine Transformation

General case

$$\begin{bmatrix} x + wTx \\ y + wTy \\ z + wTz \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & Tx \\ 0 & 1 & 0 & Ty \\ 0 & 0 & 1 & Tz \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Affine Transformation

For a vertex: w = 1



camera coordinates ? $\begin{bmatrix} 1 & 0 & 0 & -Xc \\ 0 & 1 & 0 & -Yc \\ 0 & 0 & 1 & -Zc \\ 0 & 0 & 0 & 1 \end{bmatrix}$ {Xc,Yc,Zc}

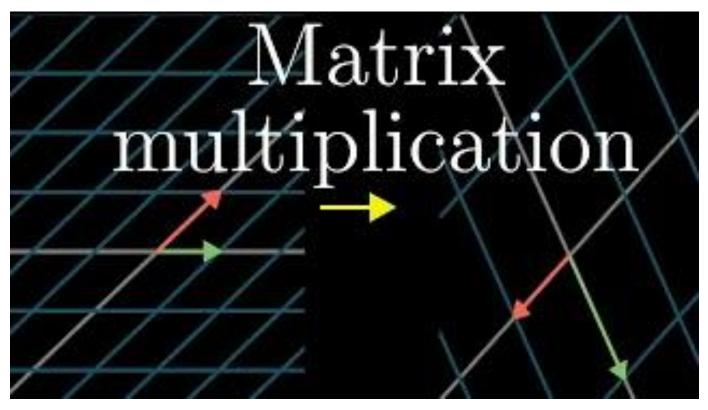
Translate the camera to the origin

What about the

Camera Space

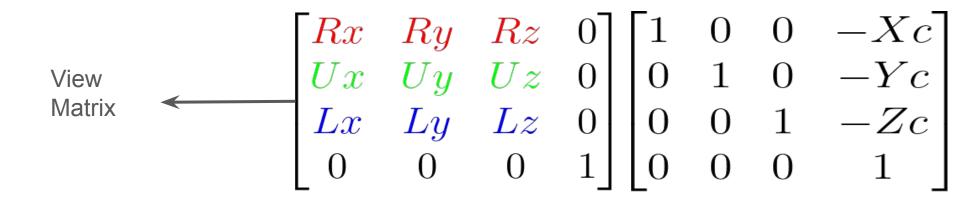
$$\begin{bmatrix} Xs' \\ Ys' \\ Zs' \\ Ws \end{bmatrix} = \begin{bmatrix} Rx & Ry & Rz & 0 \\ Ux & Uy & Uz & 0 \\ Lx & Ly & Lz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -Xc \\ 0 & 1 & 0 & -Yc \\ 0 & 0 & 1 & -Zc \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} Xs \\ Ys \\ Zs \\ Ws \end{bmatrix}$$

Matrix multiplication



https://www.youtube.com/watch?v=XkY2DOUCWMU

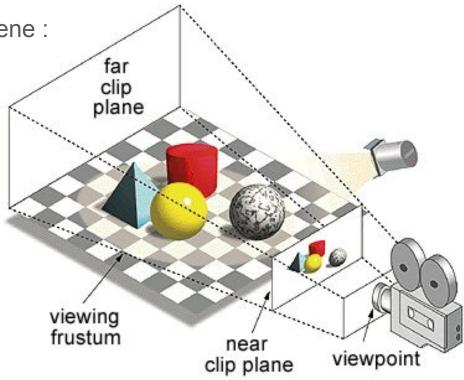
Camera Space



Reminder: Camera

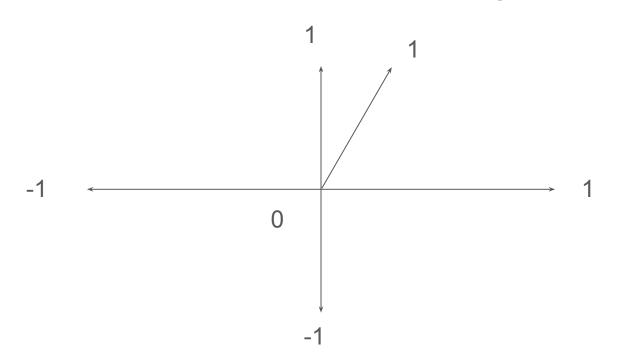
Frustum : the visible part of the scene :

- Near plane
- Far plane
- Aspect ratio
- Field of View



Projection Perspective

Objective : we want to express the visible space in the following space



x in [-1,1]

y in [-1,1]

z in [0,1]

Perspective Projection matrix

- Near plane = n
- Far plane = f
- Aspect ratio = a
- Field of View = fov

1 $s = \frac{1}{tan(fov/2)}$

$$\begin{bmatrix} s/a & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & \frac{f}{f-n} & -\frac{f*n}{f-n} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Problem

After the projection the w coordinate of the vertex is modified.

To solve this issue we normalize all vertex coordinates by dividing them by w

Summary Vertex shader

For each vertex v, the vertex shader compute a vertex v' such that :

$$v_{tmp} = \left[proj \right] \left[view \right] i$$
$$v' = \frac{v_{tmp}}{v_{tmp}.w}$$