3D Graphics

The rendering pipeline

Reminder: Scene

The rendering pipeline

Helps us go from a 3D scene to a 2D image

Minimal rendering pipeline

Re-express vertices in the camera coordinates system

Project vertices in the frustum

Find which pixel is inside which triangle
Emit fragments (candidates pixel)

-	0	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	P	P	\bigcirc
-	-	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	0	0		\bigcirc						
\bigcirc				\cdots		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
\bigcirc)				\bigcirc	\bigcirc	0	\bigcirc
				-	-			0	0	\bigcirc
\bigcirc	0	-								\bigcirc
\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-
\bigcirc	O	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-
				(C)	WWW	W.SCr	ratch	hapix	xel.	com

Compute the color to give each fragments

Choose which Fragment get to become a pixel using a Depth test

Vertex Shader

Re-express vertices in the camera coordinates system

Project vertices in the frustum

Camera Space

Reminder Camera

> "Up" vector

Re-express positions in the camera space

Reminder Camera

Our current coordinates :

$$
Z=\{0,0,1\}
$$

Reminder Camera

The camera space

Reminder Camera

The Mathematical problem

$$
\begin{aligned}
& \{X s, Y s, Z s\}=X s^{\prime} * R+Y s^{\prime} * U+Z s^{\prime} * L \\
& \{X s, Y s, Z s\}=X s * X+Y s * Y+Z s * Z
\end{aligned}
$$

$$
X s^{*} X+Y s^{*} Y+Z s^{*} Z=X s^{\prime} * R+Y s^{\prime} * U+Z s^{\prime} * L
$$

The problem Find $\mathrm{Xs}^{\prime}, \mathrm{Ys}^{\prime}$, and Zs^{\prime}

Linear Transformations

Linear Transformations

transformations

Question :

$$
X s{ }^{*} X+Y s{ }^{*} Y+Z s{ }^{*} Z=X s^{\prime *} R+Y s^{\prime}{ }^{*} U+Z s^{\prime}{ }^{*} L
$$

What is the matrix that solve this problem
(1 minute alone)
(2 minutes with your neighbors)
(5 minutes with the whole group)

Question :

$$
\begin{gathered}
\mathrm{Xs} * \mathrm{X}+\mathrm{Ys}{ }^{*} \mathrm{Y}+\mathrm{Zs}{ }^{*} \mathrm{Z}=\mathrm{Xs} \mathrm{~s}^{*} \mathrm{R}+\mathrm{Ys} \mathrm{~s}^{*} \mathrm{U}+\mathrm{Zs}{ }^{*} \mathrm{~L} \\
\text { "Right" vector } \\
{\left[\begin{array}{c}
X s \\
Y s \\
Z s
\end{array}\right]=\left[\begin{array}{ccc}
R x & U x & L x \\
R y & U y & L y \\
R z & U z & L z
\end{array}\right]\left[\begin{array}{c}
X s^{\prime} \\
Y s^{\prime} \\
Z s^{\prime}
\end{array}\right]}
\end{gathered}
$$

Question :

$$
\begin{aligned}
& X s{ }^{*} X+Y s{ }^{*} Y+Z s{ }^{*} Z=X s^{\prime}{ }^{*} R+Y s^{\prime}{ }^{*} U+Z s^{\prime}{ }^{*} L \\
& \text { "Right" vector "Look at" vector } \\
& {\left[\begin{array}{l}
X s^{\prime} \\
Y s^{\prime} \\
Z s^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
R x & U x & L x \\
R y & U y & L y \\
R z & U z & L z
\end{array}\right]^{-1}\left[\begin{array}{l}
X s \\
Y s \\
Z s
\end{array}\right]} \\
& \text { "Up" vector }
\end{aligned}
$$

Question :

$$
\begin{gathered}
\mathrm{Xs}{ }^{*} \mathrm{X}+\mathrm{Ys} \mathrm{~A}^{*} \mathrm{Y}+\mathrm{Zs} \mathrm{~s}^{*} \mathrm{Z}=\mathrm{Xs}{ }^{*} \mathrm{R}+\mathrm{Ys}{ }^{*} * \mathrm{U}+\mathrm{Zs} \text { * } \mathrm{L} \\
\text { "Right" vector } \\
{\left[\begin{array}{c}
X s^{\prime} \\
Y s^{\prime} \\
Z s^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
R x & R y & R z \\
U x & U y & U z \\
L x & L y & L z
\end{array}\right] \quad\left[\begin{array}{l}
X s \\
Y s \\
Z s
\end{array}\right]}
\end{gathered}
$$

Problem with Linear transformations

What about the

camera coordinates?
The camera space

Homogeneous Coordinates

Allow us to "move" the origin of the frame
Using 4 coordinates instead of 3 : Homogeneous coordinates

Linear Transformation

$$
\begin{aligned}
& \mathrm{X} \mathrm{~s}^{*} \mathrm{X}+\mathrm{Ys}{ }^{*} \mathrm{Y}+\mathrm{Zs}{ }^{*} \mathrm{Z}=\mathrm{X} \mathrm{~s}^{\prime} * \mathrm{R}+\mathrm{Ys} \mathrm{~s}^{\prime} * U+Z \mathrm{Zs}^{\prime} \mathrm{L}^{\prime} \\
& {\left[\begin{array}{c}
X s^{\prime} \\
Y s^{\prime} \\
Z s^{\prime} \\
W s
\end{array}\right]=\left[\begin{array}{cccc}
R x & R y & R z & 0 \\
U x & U y & U z & 0 \\
L x & L y & L z & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X s \\
Y s \\
Z s \\
W s
\end{array}\right]}
\end{aligned}
$$

Affine Transformation

General case

$$
\left[\begin{array}{c}
x+w T x \\
y+w T y \\
z+w T z \\
w
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & T x \\
0 & 1 & 0 & T y \\
0 & 0 & 1 & T z \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

Affine Transformation

For a vertex: w = 1

$$
\begin{gathered}
{\left[\begin{array}{c}
x+T x \\
y+T y \\
z+T z \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & T x \\
0 & 1 & 0 & T y \\
0 & 0 & 1 & T z \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]} \\
\text { Add the vector } T \text { to the vertex }
\end{gathered}
$$

Translate the camera to the origin

What about the

camera coordinates?

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -X c \\
0 & 1 & 0 & -Y c \\
0 & 0 & 1 & -Z c \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Camera Space

$$
\left[\begin{array}{c}
X s^{\prime} \\
Y s^{\prime} \\
Z s^{\prime} \\
W s
\end{array}\right]=\left[\begin{array}{cccc}
R x & R y & R z & 0 \\
U x & U y & U z & 0 \\
L x & L y & L z & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -X c \\
0 & 1 & 0 & -Y c \\
0 & 0 & 1 & -Z c \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X s \\
Y s \\
Z s \\
W s
\end{array}\right]
$$

Matrix multiplication

Camera Space

View
Matrix $\longleftrightarrow\left[\begin{array}{cccc}R x & R y & R z & 0 \\ U x & U y & U z & 0 \\ L x & L y & L z & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & -X c \\ 0 & 1 & 0 & -Y c \\ 0 & 0 & 1 & -Z c \\ 0 & 0 & 0 & 1\end{array}\right]$

Reminder: Camera

Frustum : the visible part of the scene :

- Near plane
- Far plane
- Aspect ratio
- Field of View

Projection Perspective

Objective : we want to express the visible space in the following space
x in $[-1,1]$
y in $[-1,1]$
z in $[0,1]$

Perspective Projection matrix

- Near plane = n
- Far plane =f
- Aspect ratio = a
- Field of View = fov

$$
\left[\begin{array}{cccc}
s / a & 0 & 0 & 0 \\
0 & s & 0 & 0 \\
0 & 0 & \frac{f}{f-n} & -\frac{f * n}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Problem

After the projection the w coordinate of the vertex is modified.
To solve this issue we normalize all vertex coordinates by dividing them by w

Summary Vertex shader

For each vertex v, the vertex shader compute a vertex v' such that :

$$
\begin{aligned}
v_{t m p} & =[p r o j][v i e w] v \\
v^{\prime} & =\frac{v_{t m p}}{v_{t m p} \cdot w}
\end{aligned}
$$

