3D Graphics

The rendering pipeline

Reminder : Scene

The rendering pipeline

Helps us go from a 3D scene to a 2D image

Minimal rendering pipeline

Re-express vertices in the camera coordinates system

Project vertices in the frustum

Find which pixel is inside which triangle

Emit fragments (candidates pixel)

Active Storillen on

Compute the color to give each fragments

Choose which Fragment get to become a pixel using a Depth test

Vertex Shader

Re-express vertices in the camera coordinates system

Project vertices in the frustum

Reminder Camera

Reminder Camera

Our current coordinates :

Reminder Camera

The Mathematical problem

 ${Xs,Ys,Zs} = Xs' * R + Ys' * U + Zs' * L$

 $\{Xs,Ys,Zs\} = Xs * X + Ys * Y + Zs * Z$

Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L

The problem Find Xs', Ys', and Zs'

Linear Transformations

Linear Transformations

https://youtu.be/rHLEWRxRGiM?si=aKhXMsqAqGqWmSQv

Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L

What is the matrix that solve this problem

(1 minute alone)

(2 minutes with your neighbors)

(5 minutes with the whole group)

$$Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L$$

"Up" vector

$$Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L$$

"Up" vector

$$Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L$$

"Up" vector

Homogeneous Coordinates

Allow us to "move" the origin of the frame

Using 4 coordinates instead of 3 : Homogeneous coordinates

Linear Transformation

$$Xs * X + Ys * Y + Zs * Z = Xs' * R + Ys' * U + Zs' * L$$

$$\begin{bmatrix} Xs' \\ Ys' \\ Zs' \\ Ws \end{bmatrix} = \begin{bmatrix} Rx & Ry & Rz & 0 \\ Ux & Uy & Uz & 0 \\ Lx & Ly & Lz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} Xs \\ Ys \\ Zs \\ Ws \end{bmatrix}$$

Affine Transformation

General case

$$\begin{bmatrix} x + wTx \\ y + wTy \\ z + wTz \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & Tx \\ 0 & 1 & 0 & Ty \\ 0 & 0 & 1 & Tz \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Affine Transformation

For a vertex: w = 1

camera coordinates ? $\begin{bmatrix} 1 & 0 & 0 & -Xc \\ 0 & 1 & 0 & -Yc \\ 0 & 0 & 1 & -Zc \\ 0 & 0 & 0 & 1 \end{bmatrix}$ {Xc,Yc,Zc}

Translate the camera to the origin

What about the

Camera Space

$$\begin{bmatrix} Xs' \\ Ys' \\ Zs' \\ Ws \end{bmatrix} = \begin{bmatrix} Rx & Ry & Rz & 0 \\ Ux & Uy & Uz & 0 \\ Lx & Ly & Lz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -Xc \\ 0 & 1 & 0 & -Yc \\ 0 & 0 & 1 & -Zc \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} Xs \\ Ys \\ Zs \\ Ws \end{bmatrix}$$

Matrix multiplication

https://www.youtube.com/watch?v=XkY2DOUCWMU

Camera Space

Reminder: Camera

Frustum : the visible part of the scene :

- Near plane
- Far plane
- Aspect ratio
- Field of View

Projection Perspective

Objective : we want to express the visible space in the following space

x in [-1,1]

y in [-1,1]

z in [0,1]

Perspective Projection matrix

- Near plane = n
- Far plane = f
- Aspect ratio = a
- Field of View = fov

1 $s = \frac{1}{tan(fov/2)}$

$$\begin{bmatrix} s/a & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & \frac{f}{f-n} & -\frac{f*n}{f-n} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Problem

After the projection the w coordinate of the vertex is modified.

To solve this issue we normalize all vertex coordinates by dividing them by w

Summary Vertex shader

For each vertex v, the vertex shader compute a vertex v' such that :

$$v_{tmp} = \left[proj \right] \left[view \right] i$$
$$v' = \frac{v_{tmp}}{v_{tmp}.w}$$